# Program multiplies two matrices AxB. (Sample Programs)

This program multiplies two matrices AxB.
Any rows or colunmas.
Eg:
A)
1 2 3
4 5 6
7 8 9

B)
9 8 7
6 5 4
3 2 1

Note:
Jim, to assign the tag value of anonymous array,
working without declaring arrays. Is that right?
See you the init program !!!

**************************************************************************
#matrices multiplication

#dim a(8) #<<< >>> !!!!!!!!! ?????????? and run
#dim b(8) #<<< >>> !!!!!!!!! ?????????? and run

a = {1,2,3,4,5,6,7,8,9}
b = {9,8,7,6,5,4,3,2,1}

redim a(3,3)
redim b(3,3)

cls

gosub show

for row = 0 to a[?,]-1
for col = 0 to b[,?]-1
t = 0
for h1 = 0 to a[,?]-1
t = t + (a[row,h1] * b[h1,col])
print "("+ string(a[row,h1]) + " x " + string (b[h1,col]) +") + ";
next h1
print " = "+t
next col
print
next row

print
print "*****************"
print

for row = 0 to a[?,]-1
for col = 0 to b[,?]-1
t = 0
for h1 = 0 to a[,?]-1
t = t + (a[row,h1] * b[h1,col])
print "("+ string(a[row,h1]* b[h1,col])+") + ";
next h1
print " = "+t
next col
print
next row

end

#*********************
show:

print "A"
for row = 0 to a[?,]-1
for col = 0 to a[,?]-1
print a[row,col] + " ";
next col
print
next row

print
print "x"
print
print "B"

for row = 0 to a[?,]-1
for col = 0 to a[,?]-1
print b[col,row] + " ";
next col
print
next row

print
print "="
print
return

******************************************************
Out Screen

A
1 2 3
4 5 6
7 8 9

x

B
9 6 3
8 5 2
7 4 1

=

(1 x 9) + (2 x 6) + (3 x 3) + = 30
(1 x 8) + (2 x 5) + (3 x 2) + = 24
(1 x 7) + (2 x 4) + (3 x 1) + = 18

(4 x 9) + (5 x 6) + (6 x 3) + = 84
(4 x 8) + (5 x 5) + (6 x 2) + = 69
(4 x 7) + (5 x 4) + (6 x 1) + = 54

(7 x 9) + (8 x 6) + (9 x 3) + = 138
(7 x 8) + (8 x 5) + (9 x 2) + = 114
(7 x 7) + (8 x 4) + (9 x 1) + = 90

*****************

(9) + (12) + (9) + = 30
(8) + (10) + (6) + = 24
(7) + (8) + (3) + = 18

(36) + (30) + (18) + = 84
(32) + (25) + (12) + = 69
(28) + (20) + (6) + = 54

(63) + (48) + (27) + = 138
(56) + (40) + (18) + = 114
(49) + (32) + (9) + = 90

*****************************************************************

Regards!